3tier Oracle Applications monitoring and diagnostics

Uroš Majcen uros@quest-slo.com

Copyright © 2006 Quest Software

Challenges Supporting User Experience

- Limited ability to understand declining end user conversion / adoption / usability
- Inability to reproduce or diagnose the end user's problem as reported by the help desk.
- Interrogating users as a means of diagnosis

The Negative End-User Experience

From a customer perspective, the site is "down" whenever it does not work as expected.

Source: USA Today Snapshot, 2006

- It's more than just performance:
 - Content effectiveness
 - Site Navigation
 - Business process & transactions

\mathbf{D} hroug Holistic View of Performance 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 **Availability** Web Server 99% 99% **JEE Server** Directory 99.99% Database 99% OS 99.999% **Network** 99.9% **End User** 75% OUEST SOFTWARE[®] **Available** Unavailable

Capabilities

Application Analysis

- Which application is having a problem?
- What are the usage trends of an application?
- What is the root cause of an application issue?

User Behavior

- Where are my users coming from?
- Which users are having problems?
- What did the user do during their session?

User Experience

Management

Transaction Diagnostics

- Which transactions are the slowest?
- What is causing the problem?
- What does a transaction path look like?

 \bigcirc]3

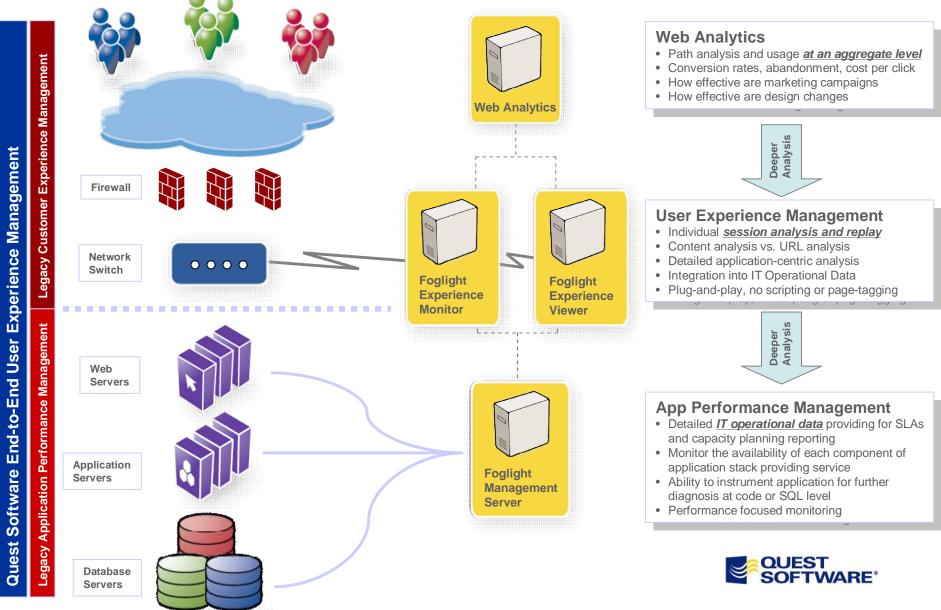
hroug

Content Analysis

- What are the slowest content types?
- What are the typical navigation paths?
- What did my users actually see?

Web Services Performance

- What is the performance of a Web service?
- What was the success rate for Web service calls?
- What volume of traffic is generated by the Web service?


Web Site Diagnostics

- How much time do users spend on the site?
- What volume of traffic is generated?
- What is the page performance of the site?

Infrastructure Analysis

- What is the performance by protocol?
- What is the volume of traffic across the protocol?
- How is the HTTP server performing?

User Experience Management Workflow

2 types of application, 2 types of approaches hroug

- Web (http, https, soap)
 - Session capture
- J2EE
 - Transaction tracing

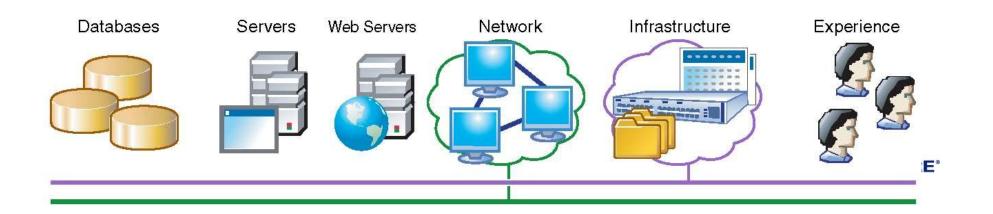
 \mathbf{D}

Web type

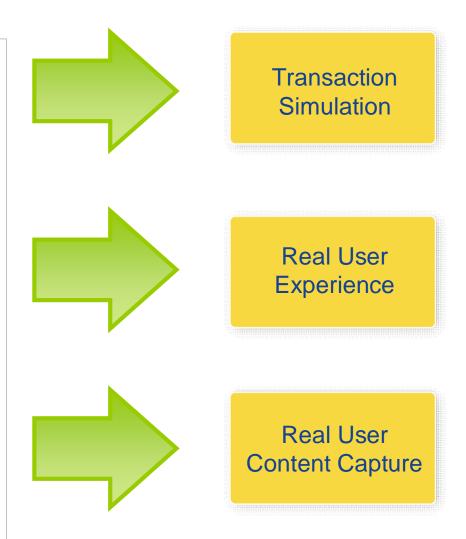
Problems supporting End Users

- Administrators are notified of web problems by the end user, help desk, or executives
- Web application usage: conversion and adoption rates fluctuate with limited ability to understand the reason
- The help desk cannot reproduce the end user's problem
- Users are being <u>interviewed</u> as a means of diagnosis

- The result is a <u>negative</u> end-user experience with real business impact:
 - Lost revenues/productiv ity
 - Increased support costs
 - Damaged brand/reputation



Identify the four "Ws"


When there is a problem—as indicated by poor end user response times Where the problem occurs—as indicated by end user response times for client, network and backend processing as well as the application infrastructure tiers monitoring

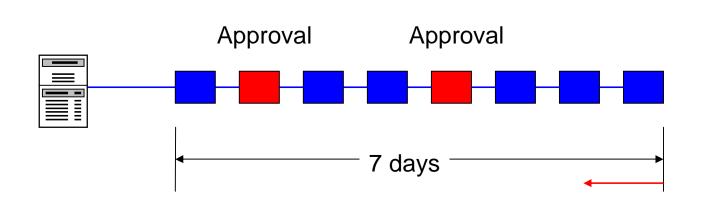
What is causing the problem—by mapping it to the metrics collected for the end users as well as those collected within the application infrastructure tiers Who is causing (or affected by) the problem—investigating specific end user (locations) activities when needed

Initiatives to Solve These Problems – first part

- Administrators are notified of web problems by the end user, help desk, or executives
- Web application usage: conversion and adoption rates fluctuate with limited ability to understand the reason
- The help desk cannot reproduce the end user's problem
- Users are being <u>interviewed</u> as a means of diagnosis

E2E - technical transaction...

"Transaction" is taking longer than 3 seconds

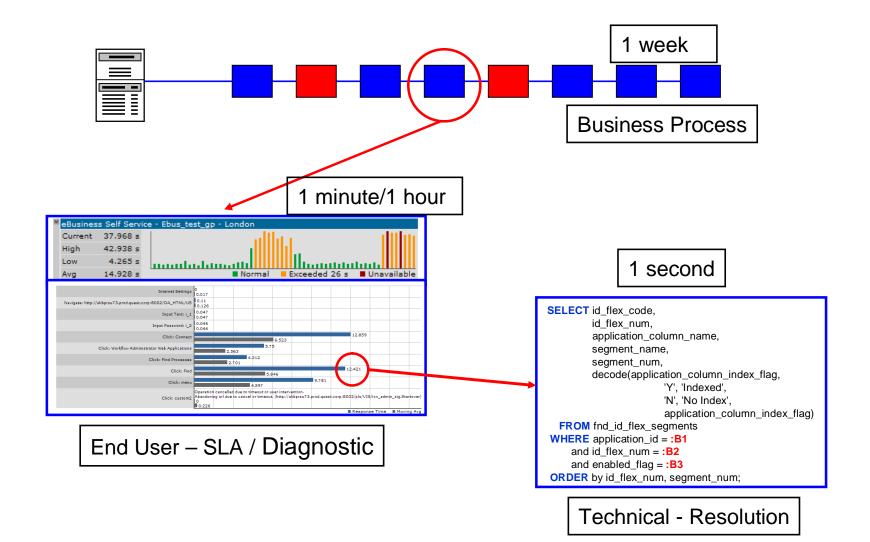

Bind	Туре	Value		
B1	Number	101		
B2	Number	101		
B 3	Varchar(2)	Y		

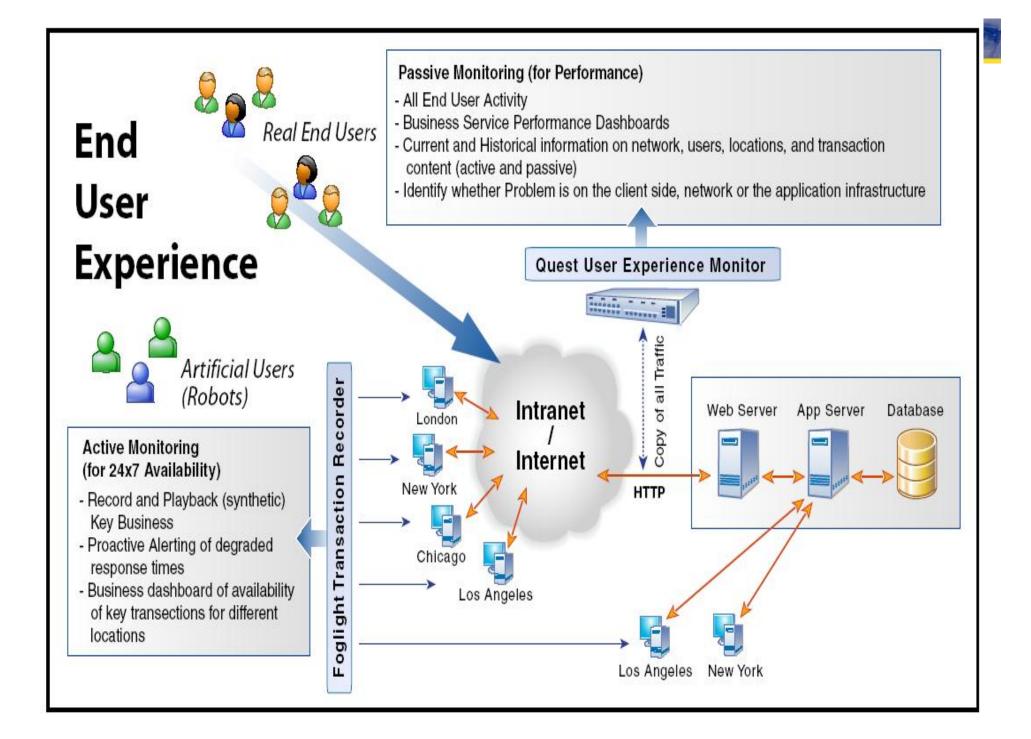
- Code tuning in production fixes symptom not cause
- User behaviour huge reports

Time Line 1 Second 1 Minute 1 Hour 1 Week 1 Month

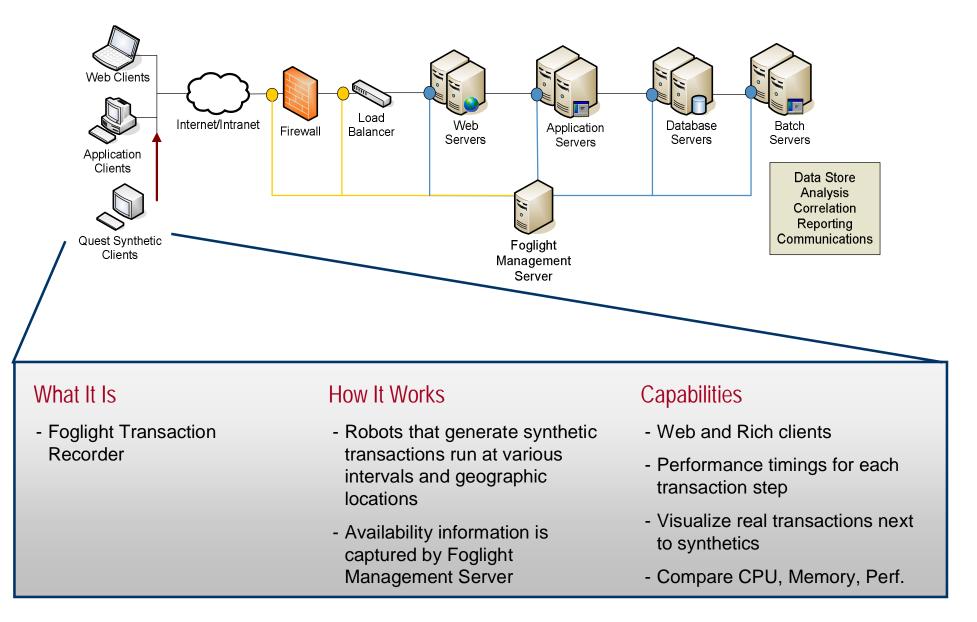
E2E - business transaction...

Business Activity:

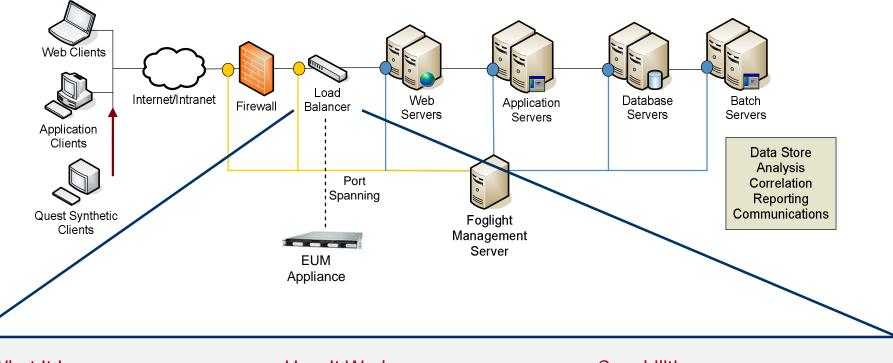

User "A" approves all orders over £x and all expense claims over £y (approval bottleneck)


Deferred Processes:

Item Z is deferred based on a "guessed" resource usage where as its actual usage is very small



E2E – a complete perspective

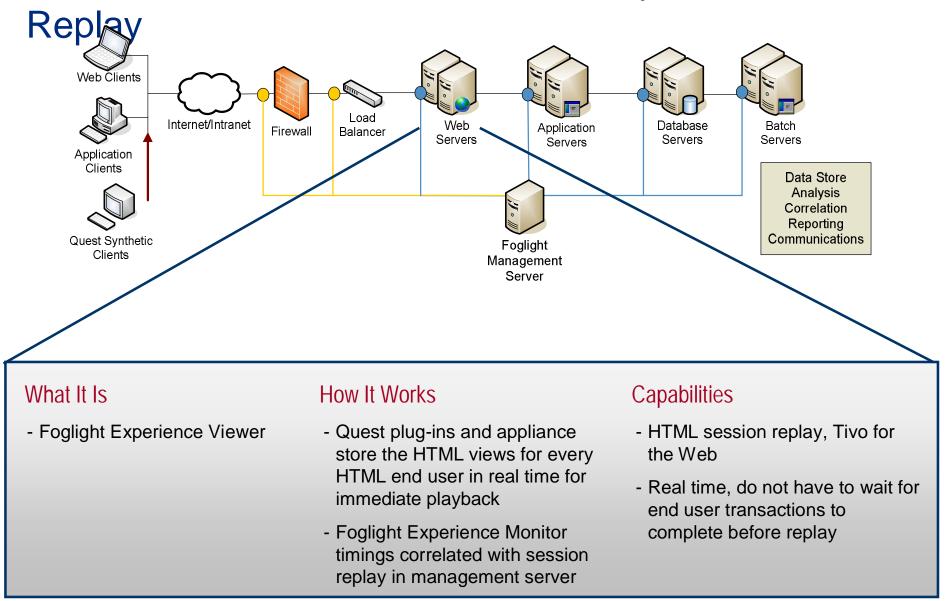


Quest EUM: User Simulation

Quest EUM: Real User Monitoring

What It Is

- Foglight Experience Monitor
- Foglight Web Services Monitor


How It Works

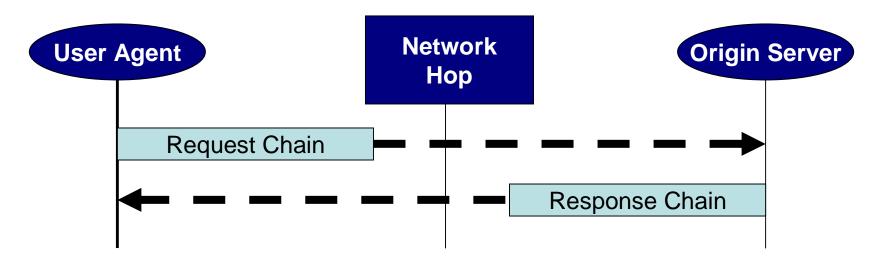
- A Quest appliance monitors real Web end user response times
- Measures browser-switch and round trip data center times

Capabilities

- Web and Web Services traffic
- Track transaction timings for each end user in sequence
- Break down transaction times to each hit element
- Detailed metrics by user

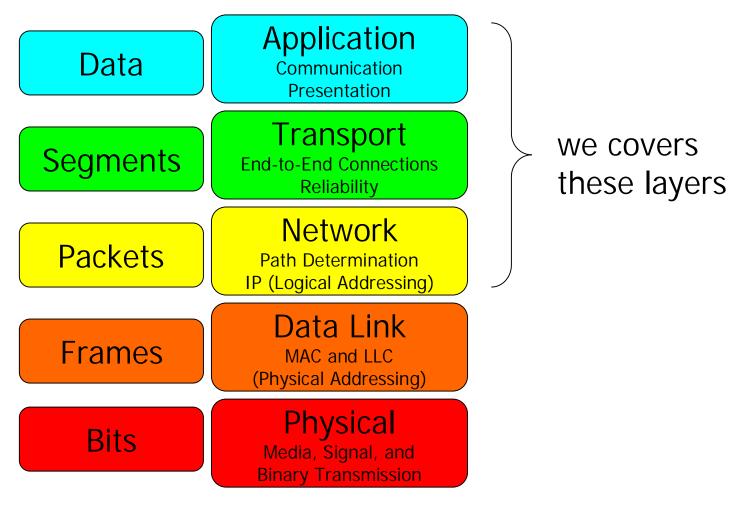
Quest EUM: HTML Session Capture &

How we do it? HTTP defined


- Standard protocol used by the World-Wide Web initiative since 1990
- HTTP stands for Hypertext Transfer Protocol
- The current version of the HTTP/1.1
- The full definition for HTTP/1.1 is published as: <u>http://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf</u>
- Overall Operation (Request response protocol)
 - Client sends a request in the form of a URI (Uniform Resource MIME-like message and response code for the corresponding Identifier) followed by message and content
 - Server responds with a similar request

HTTP Request/Response Chain

Basic Request



Typical HTTP Request

No. -Time Source Destination Protocol Info 66.163.171.129 N http > sapdp15 [SYN, ACK] Seg=0 Ack=1 Win=65535 Len=0 MSS=14 TCP 11 0.257219 192.168.1.100 192.168.1.100 以 sapdp15 > http [ACK] Seg=1 Ack=1 Win=65535 Len=0 12 0.257266 66.163.171.129 TCP. 13 0.260352 192.168.1.100 66.163.171.129 TCP. [TCP segment of a reassembled PDU] GET / HTTP/1.1 14 0.260456 192.168.1.100 66.163.171.129 HTTP 192.168.1.100 http > sapdp15 [ACK] Seg=1 Ack=1330 Win=65451 Len=0 15 0.298269 66.163.171.129 TCP 16 0.594174 66.163.171.129 192.168.1.100 TCP. [TCP segment of a reassembled PDU] [Frame: 13, payload: 0-1259 (1260 bytes)] [Frame: 14, payload: 1260-1328 (69 bytes)] Hypertext Transfer Protocol ∃ GET / HTTP/1.1\r\n Host: my.yahoo.com\r\n User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7\r\n Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5\r\n Accept-Language: en-us, en; g=0.5\r\n Accept-Encoding: gzip, deflate\r\n Accept-Charset: ISO-8859-1, utf-8; g=0.7, *; g=0.7\r\n Keep-Alive: 300\r\n Connection: keep-alive\r\n Cookie: LYC=1_v=2&1_1v=9&1_1=9if8hae&1_s=y2zq13xy150yuzxt03rvss5yxtvvsxz2&1_1id=155enn4&1_r=2a&1_1c=0_1_0_0_-1&1_um=0_0_1 \r\n >

0000	47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 0d 0a	GET / HT TP/1.1
0010	48 6f 73 74 3a 20 6d 79 2e 79 61 68 6f 6f 2e 63	Host: my .yahoo.c
0020	6f 6d 0d 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20	omUser -Agent:
0030	4d 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 57 69 6e	Mozilla/ 5.0 (win
0040	64 6f 77 73 3b 20 55 3b 20 57 69 6e 64 6f 77 73	dows; U; Windows
0050	20 4e 54 20 35 2e 31 3b 20 65 6e 2d 55 53 3b 20	NT 5.1; en-US;
0060	72 76 3a 31 2e 37 2e 31 32 29 20 47 65 63 6b 6f	rv:1.7.1 2) Gecko
0070	2f 32 30 30 35 30 39 31 35 20 46 69 72 65 66 6f	/2005091 5 Firefo
0080	78 2f 31 2e 30 2e 37 0d Oa 41 63 63 65 70 74 3a	x/1.0.7Accept:
0090	20 74 65 78 74 2f 78 6d 6c 2c 61 70 70 6c 69 63	text/xm l,applic
00a0	61 74 69 6f 6e 2f 78 6d 6c 2c 61 70 70 6c 69 63	ation/xm l,applic
00b0	61 74 69 6f 6e 2f 78 68 74 6d 6c 2b 78 6d 6c 2c	ation/xh tml+xml,
00c0	74 65 78 74 2f 68 74 6d 6c 3b 71 3d 30 2e 39 2c	text/htm l;q=0.9,
00d0	74 65 78 74 2f 70 6c 61 69 6e 3b 71 3d 30 2e 38	text/pla in;q=0.8 image/n ng */* g
0040	<u>76 69 6d 61 67 65 7f 70 69 67 7c 70 7f 70 3h 71</u>	imade/n ng #/#•g

Protocol Stack

Protocol Stack Examples

Layer	Example
Application	HTTP, HTTPS, PeopleSoft, Siebel, SOAP
Transport	TCP
Network	IP
Data Link	Ethernet
Physical	10Base-T, 100Base-TX

TCP

- Transmission Control Protocol
- Allows hosts to communicate using pipe-like "connections"
- Guarantees reliable and in-order delivery
- 3 phases:
 - Establish connection (3-way handshake)
 - Data transfer
 - Connection termination

SSL

- Cryptographic protocol that provides secure communications
- HTTP + SSL = HTTPS
- SSL "handshake" establishes secure HTTP session
- Public key certificates identify the servers

HTTP

- Conveys information on WWW
- Request-Response protocol between clients and servers
- Client typically a web browser establishes TCP connection on port 80
- Client requests: "GET / HTTP/1.1"
- Server responds: "200 OK"

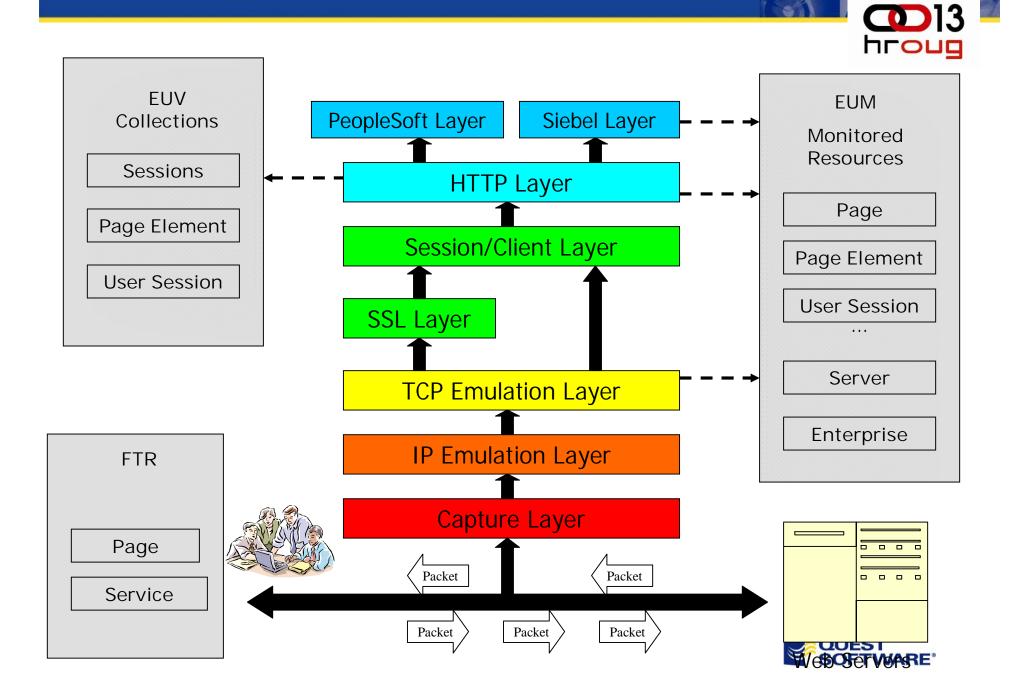
SOAP

- Protocol for exchange XML messages over a network
- Typically implemented on top of HTTP
- Foundation of "web services"

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

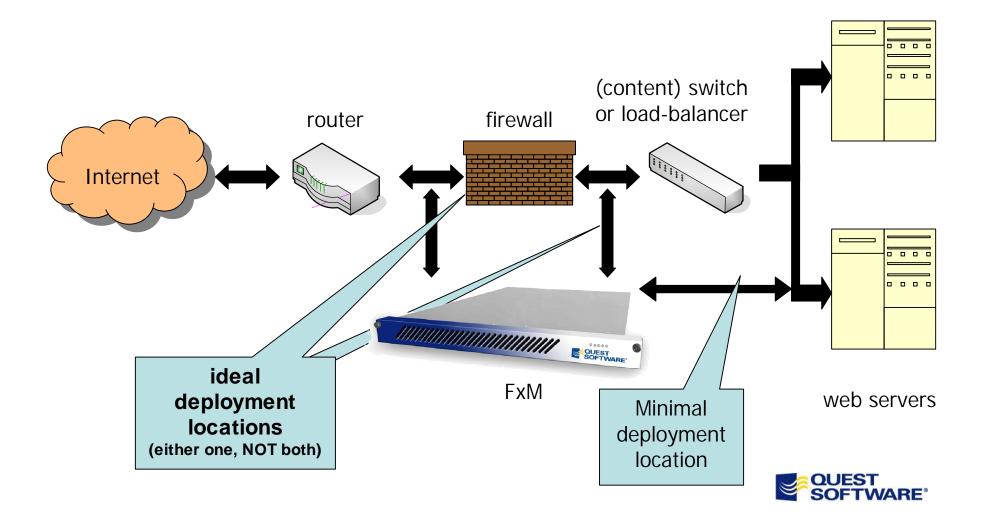
<soap:Body>

<getProductDetails xmlns="http://warehouse.example.com/ws">


<productID>827635</productID>

</getProductDetails>

</soap:Body>


</soap:Envelope>

Deployment – Logical placement

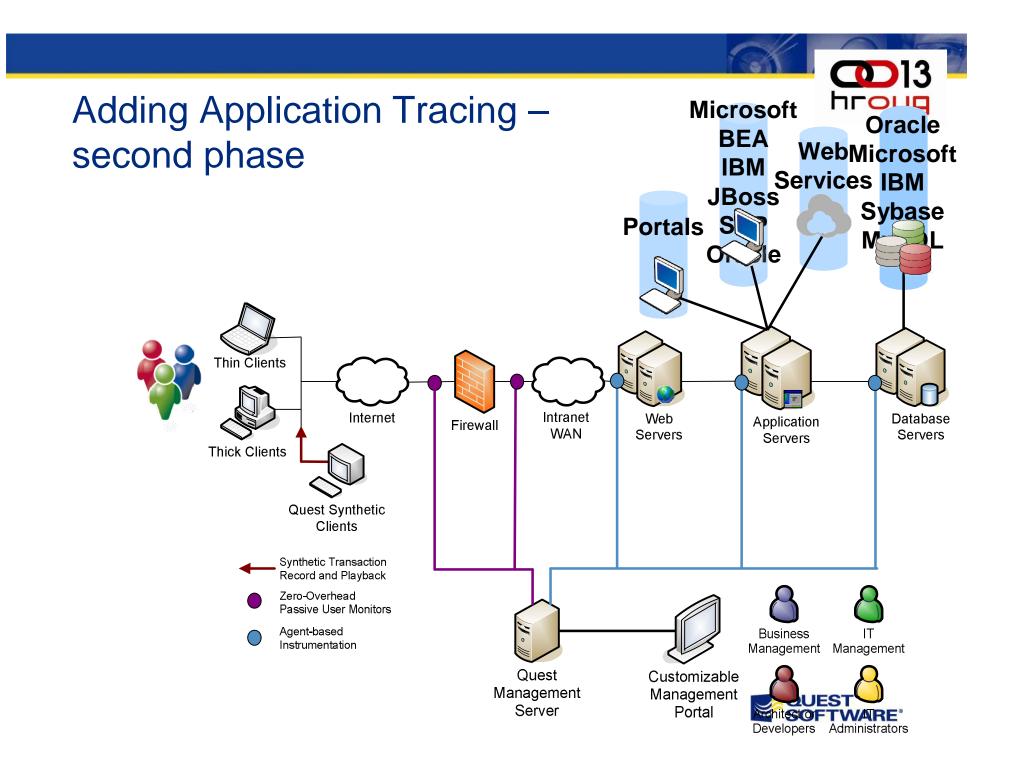
Server compliance monitoring simplifies "bottleneck" identification

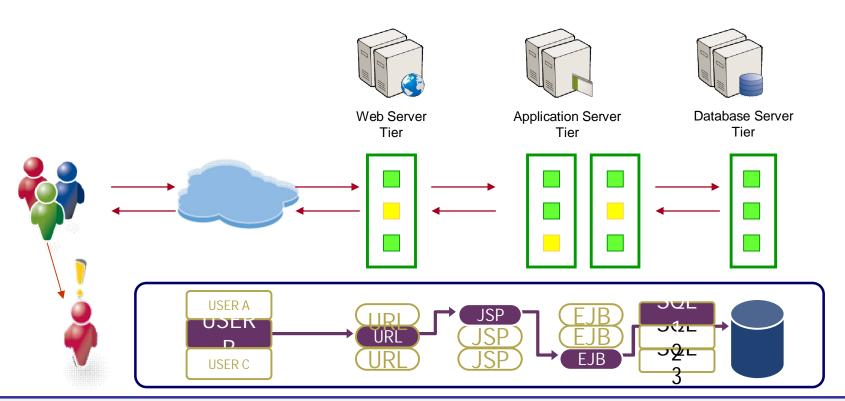
Service Level Complian 3/21/05	nce								<u>Edit</u>
Server	Service Level Compliance	Response Time	Processing Load %	Commands	TCP Connections	Success	TCP Timeouts	Server Bytes	User Bytes
216.239.51.104	0.07 %	2.358 secs	7.22 %	1399	1405	100.00 %	0	0.011 gb	1.245 mb
192.168.1.195	11.02 %	1.194 secs	4.21 %	1733	1732	100.00 %	0	0.007 gb	0.280 mb
192.77.210.18	98.07 %	0.063 secs	41.06 %	100417	33661	100.00 %	20	4.689 gb	44.466 mb
192.77.210.19	98.34 %	0.060 secs	33.64 %	88150	30049	99.97 %	8	2.107 gb	38.018 mb
ispatches.quest.com (12.106.87.32)	99.29 %	0.152 secs	13.84 %	38946	1087	100.00 %	0	0.133 gb	21.440 mb
10.4.128.54	100.00 %	0.000 secs	0.00 %	0	5759	0.00 %	0	0.000 gb	0.000 mb
192.77.210.55	100.00 %	0.000 secs	0.00 %	286	1141	0.00 %	0	0.000 gb	0.489 mb
192.77.210.25	100.00 %	0.011 secs	0.02 %	858	859	100.00 %	0	0.001 gb	0.087 mb
192.77.210.54	100.00 %	0.006 secs	0.01 %	925	925	0.00 %	0	0.000 gb	0.057 mb

Prioritize tuning efforts and dedicate resources to where they are needed the most. e.g. Some servers/apps may always be more problematic than the others.

Proactively optimize applications

Diagnosis: Content							Delete
What are the slowest Web Pages?	View	Edit	Сору	Distribute		Ŷ	
Which Web Pages cause the most user-triggered page stops?	View	Edit	Сору	Distribute	Ŷ	Ŷ	
What are the slowest Content Types?	View	Edit	Сору	Distribute	Ŷ	Ŷ	
What are the slowest Page Components?	View	Edit	Сору	Distribute	Ŷ	Ŷ	
Secure Web Page Design	View	Edit	Сору	Distribute	Ŷ	Ŷ	
What are the slowest Secure Web Pages?	View	Edit	Сору	Distribute	Ŷ	Ŷ	
What are the slowest Secure Content Types?	View	Edit	Сору	Distribute	Ŷ	Ŷ	
What are the slowest Secure Page Components?	View	Edit	Сору	Distribute	Ŷ		
Diagnosis: Transactions							Delete
Which paths might be candidates for Web Transactions?	View	Edit	Сору	Distribute		Ŷ	
What are the slowest Web Transactions?	View	Edit	Сору	Distribute	Ŷ		
Diagnosis: User Experience							Delete
What kind of access speed do End Users have?	View	Edit	Сору	Distribute		Ŷ	
What is the quality of the User's Experience with the site?	View	Edit	Сору	Distribute	Ŷ	Ŷ	
How does time-of-day affect the End User experience?	View	Edit	Сору	Distribute	Ŷ		


Concentrate on those end-user activities that have the most negative impact on the business operation

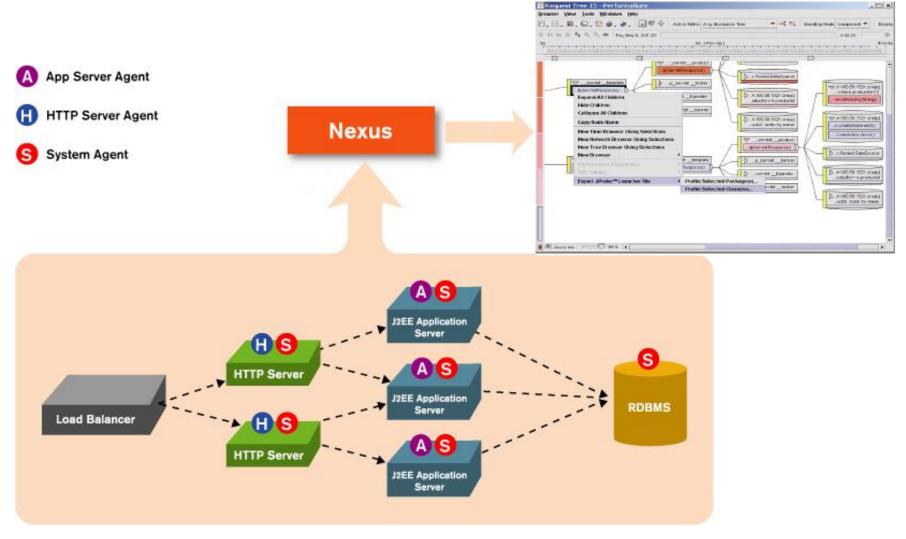


Single User Transaction Tracing

Capabilities

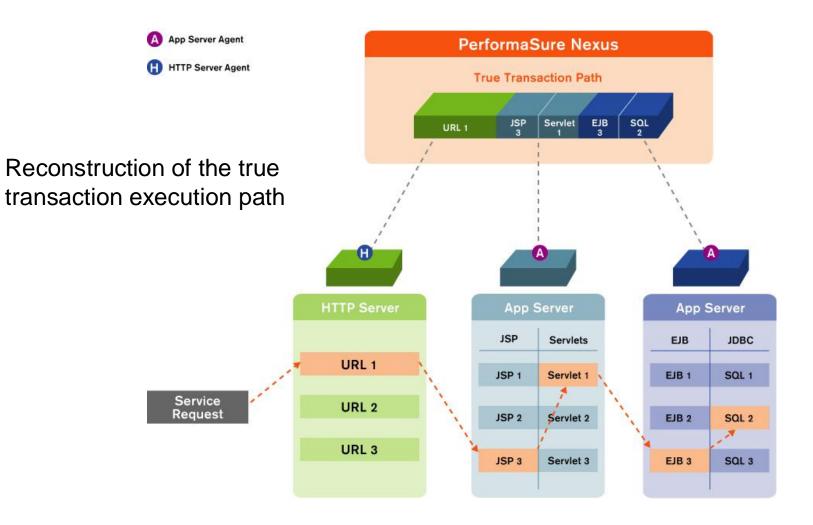
Single user transaction tracing mapping all services used in context to the end user request Transaction component decomposition and performance measurement analysis User transaction record and playback can visualize the content experienced by the user

Value

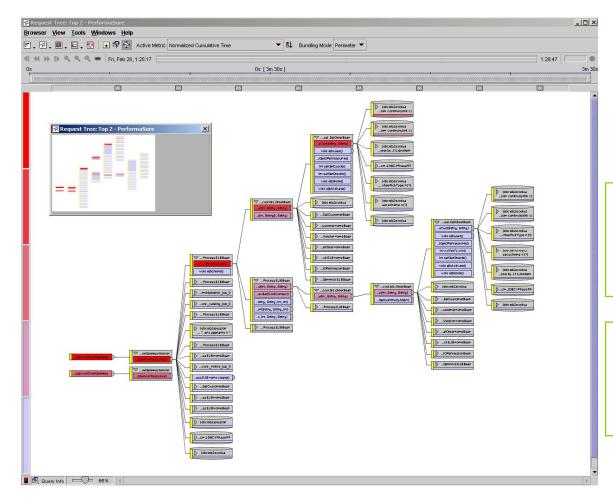

Isolate the individual user and the user request with a complete map of the transaction's execution path

hroug

Pinpoint root cause with deep component level diagnostics such as SQL Bind Variable or method level detail

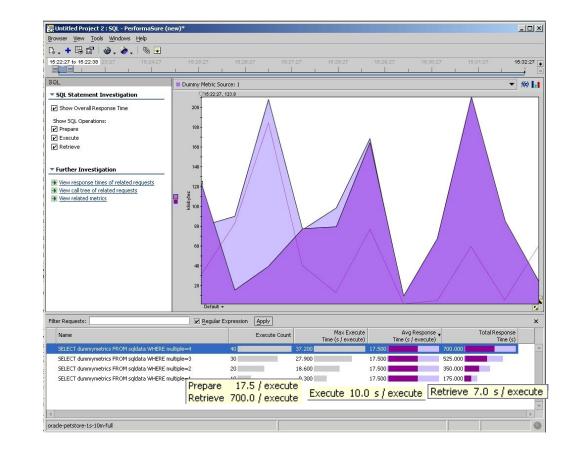

See the actual error messages or content the user experienced for quicker problem resolution

Architecture


Tag and Follow[™] Technology

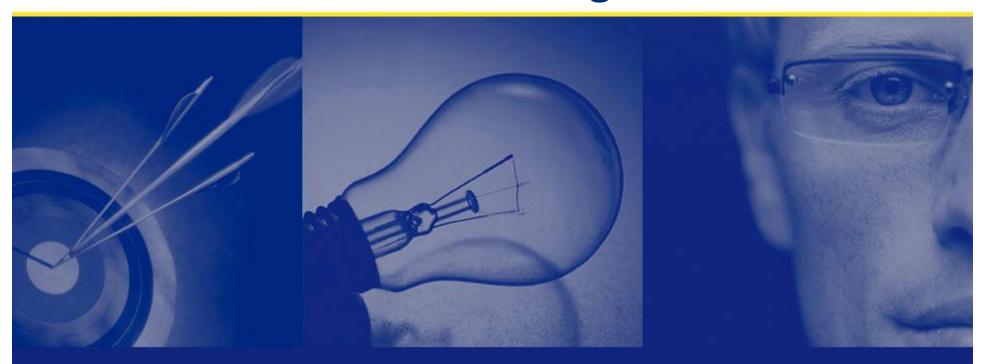
 \mathbf{D} hroug

"Tag-and-Follow" technology reconstructs physical and logical execution path of transaction


Color-coded, method-level timing information immediately identifies slow running components

37

SQL Browser


- View the most expensive SQL call from the Java app by:
 - Execute
 - Prepare
 - Retrieve
- Correlated with the end-user transaction

Thank You for Attending

